Ferroptosis: A Novel Mechanistic Insight and Therapeutic Opportunity in Cholangiocarcinoma
DOI:
https://doi.org/10.64229/z72jhq14Keywords:
Ferroptosis, Cholangiocarcinoma, Iron metabolism, Lipid peroxidation, Ferroptosis Inducers, Nanomedicine, ImmunotherapyAbstract
Cholangiocarcinoma, a malignancy of the biliary tract, remains one of the most lethal cancers with limited treatment options and poor prognosis. Emerging evidence indicates that ferroptosis an iron-dependent, oxidative form of regulated cell death, is a promising therapeutic vulnerability in Cholangiocarcinoma (CCA). This review presents an in-depth analysis of the molecular mechanisms driving ferroptosis, including iron metabolism, lipid peroxidation, and the glutathione/glutathione peroxidase 4 (GPX4) axis. It also explores the complex regulation of ferroptosis by key molecules including p53, TP53-induced glycolysis and apoptosis regulator (TIGAR), and noncoding RNAs within the CCA context. Recent computational and experimental studies have identified ferroptosis-related gene signatures and biomarkers that correlate with prognosis and therapeutic response. Moreover, ferroptosis inducers including small molecules like erastin, ras-selective lethal small molecule 3 (RSL3), and artesunate, have demonstrated potent anticancer effects in preclinical models. Nanotechnology-based strategies and gene-editing approaches offer novel delivery systems to enhance ferroptotic responses while minimizing systemic toxicity. The tumor microenvironment, particularly inflammation and immune components, further modulates ferroptosis and presents opportunities for combination therapies. This review concludes that targeting ferroptosis represents a novel and multifaceted therapeutic strategy for CCA, with the potential to synergize with chemotherapy, immunotherapy, and nanomedicine. Continued investigation into ferroptosis regulation and precision-based delivery systems could usher in a new era of effective treatments for this challenging malignancy.
References
[1]Hori Y, Yoh T, Nishino H, Okura K, Kurimoto M, Takamatsu Y, et al. Ferroptosis-related gene glutathione peroxidase 4 promotes reprogramming of glucose metabolism via Akt-mTOR axis in intrahepatic cholangiocarcinoma. Carcinogenesis, 2024, 45(3), 119-130. DOI: 10.1093/carcin/bgad094
[2]Rabitha R, Shivani S, Showket Y, Sudhandiran G. Ferroptosis regulates key signaling pathways in gastrointestinal tumors: Underlying mechanisms and therapeutic strategies. World Journal of Gastroenterology, 2023, 29(16), 2433-2451. DOI: 10.3748/wjg.v29.i16.2433
[3]Tamargo J, López-Sendón J. Novel therapeutic targets for the treatment of heart failure. Nature Reviews Drug Discovery, 2011, 10(7), 536-555. DOI: 10.1038/nrd3431
[4]Aruchamy M, Snega R, Muthupandian S. Regulatory role of SLC3A2 in ferroptosis and its impact on head and neck squamous cell carcinoma: A bioinformatics study. Indian Journal of Biochemistry and Biophysics, 2025, 62(10), 1069-1076. DOI: 10.56042/ijbb.v62i10.16697
[5]Dächert J, Schoeneberger H, Rohde K, Fulda S. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death. Oncotarget, 2016, 7(39), 63779-63792. DOI: 10.18632/oncotarget.11687
[6]Jin W, Zhuang X, Lin Y, Zhao X. Integrating ferroptosis-related genes (FRGs) and prognostic models to enhance UCEC outcome prediction and therapeutic insights. Journal of Applied Genetics, 2023, 64(4), 723-735. DOI: 10.1007/s13353-023-00779-3
[7]Rodriguez R, Schreiber SL, Conrad M. Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Molecular Cell, 2022, 82(4), 728-740. DOI: 10.1016/j.molcel.2021.12.001
[8]Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, et al. Chemical design of magnetic nanomaterials for imaging and ferroptosis-based cancer therapy. Chemical Reviews, 2025, 125(4), 1897-1961. DOI: 10.1021/acs.chemrev.4c00546
[9]Liu Y, Yang L, Meskini M, Goel A, Opperman M, Shyamal SS, et al. Gut microbiota and tuberculosis. Imeta, 2025, 4(4), e70054. DOI: 10.1002/imt2.70054
[10]Khatrawi EM, Luqman Ali S, Ali SY, Abduldayeva A, Mugibel MAA. Robust multiepitope vaccine from glycoproteins against human metapneumovirus genotypes A2a, A2b, and A2c by utilizing immunoinformatics and reverse vaccinology approaches. Viral Immunology, 2025, 38(5), 157-171. DOI: 10.1089/vim.2025.0021
[11]Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S, et al. Emerging mechanisms and targeted therapy of ferroptosis in neurological diseases and neuro-oncology. International Journal of Biological Sciences, 2022, 18(10), 4260-4274. DOI: 10.7150/ijbs.72251
[12]Latunde-Dada GO. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochimica et Biophysica Acta (BBA)-General Subjects, 2017, 1861(8), 1893-1900. DOI: 10.1016/j.bbagen.2017.05.019
[13]Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li Y, et al. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Archives of Toxicology, 2023, 97(6), 1439-1451. DOI: 10.1007/s00204-023-03476-6
[14]Cheng X, Fan K, Wang L, Ying X, Sanders AJ, Guo T, et al. TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. Cell Death & Disease, 2020, 11(2), 92. DOI: 10.1038/s41419-020-2272-z
[15]Patel A, Jain P, Ajazuddin. Recent advances in the therapeutics and modes of action of a range of agents used to treat ulcerative colitis and related inflammatory conditions. Inflammopharmacology, 2025, 33(9), 4965-4996. DOI: 10.1007/s10787-025-01906-8
[16]Yang X, Liu Y, Wang Z, Jin Y, Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Communications Biology, 2024, 7(1), 1475. DOI: 10.1038/s42003-024-07180-8
[17]Forcina GC, Dixon SJ. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics, 2019, 19(18), e1800311. DOI: 10.1002/pmic.201800311
[18]Cheng J, Ma X, Tao J, Jiang X, Chen P, Duan X. Neuroprotective effects of ethanol extraction from Rubia yunnanensis Diels on chronic cerebral hypoperfusion: Modulation of the system Xc-/GSH/GPX4 axis to alleviate oxidative stress and ferroptosis. Frontiers in Pharmacology, 2025, 16, 1552228. DOI: 10.3389/fphar.2025.1552228
[19]Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nature Cell Biology, 2019, 21(5), 579-591. DOI: 10.1038/s41556-019-0305-6
[20]Khatrawi EM, Ali SL, Ali SY, Abduldayeva A, Alhegailie AS. Designing a multi-epitope vaccine targeting UPF0721 of meningitis-causing Salmonella enterica serovar Typhimurium strain L-4126 by utilizing immuno-informatics and in silico approaches. Molecular Systems Design & Engineering, 2025, 10, 549-566. DOI: 10.1039/D5ME00027K
[21]Miao X, Hu J, Chai C, Tang H, Zhao Z, Luo W, et al. Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line derived from a Chinese patient. Cancer Cell International, 2022, 22(1), 418. DOI: 10.1186/s12935-022-02840-3
[22]Ali A, Ali SL, Alamri A, Khatrawi EM, Baiduissenova A, Suleimenova F, et al. Multi-epitope-based vaccine models prioritization against Astrovirus MLB1 using immunoinformatics and reverse vaccinology approaches. Journal of Genetic Engineering & Biotechnology, 2025, 23(1), 100451. DOI: 10.1016/j.jgeb.2024.100451
[23]Ali SL, Ali A, Khan A. Design of chimera vaccine against cutavirus using vaccinomics and immunoinformatics approaches. In Silico Pharmacology, 2025, 13(3), 172. DOI: 10.1007/s40203-025-00467-6
[24]Atukpa ME, Okeke EO, Falade MO, ALi A, Ali SL, Hajar A, et al. Genetic identification and determination of parasites (Babesia, Leptospira and Toxoplasma Gondi) in wild rats. Research Square, 2024, 1-13. DOI: 10.21203/rs.3.rs-3765664/v1
[25]Raggi C, Gammella E, Correnti M, Buratti P, Forti E, Andersen JB, et al. Dysregulation of iron metabolism in cholangiocarcinoma stem-like cells. Scientific Reports, 2017, 7(1), 17667. DOI: 10.1038/s41598-017-17804-1
[26]Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nature Reviews Drug Discovery, 2017, 16(6), 400-423. DOI: 10.1038/nrd.2016.248
[27]Ali SL, Ali A, Ullah W, Khan A, Khatrawi EM, Malik A, et al. Promising vaccine models against astrovirus MLB2 using integrated vaccinomics and immunoinformatics approaches. Molecular Systems Design & Engineering, 2024, 9(12), 1285-1299. DOI: 10.1039/D3ME00192J
[28]Yao W, Liu X, He Y, Tian M, Lu S, Wang Q, et al. ScRNA-seq and bulk RNA-seq reveal the characteristics of ferroptosis and establish a risk signature in cholangiocarcinoma. Molecular Therapy Oncology, 2022, 27, 48-60. DOI: 10.1016/j.omto.2022.09.008
[29]Zhu J, Ye Z, Zhang Z, Liu J, Ali SL. AI-Integrated 3D imaging and modelling for hip morphology assessment in athletes. Comput Methods Biomech Biomed Engin, 2025, 1-11. DOI: 10.1080/10255842.2025.2502828
[30]Sae-Fung A, Mutirangura A, Jitkaew S. Identification and validation of a novel ferroptosis-related gene signature for prognosis and potential therapeutic target prediction in cholangiocarcinoma. Frontiers in Immunology, 2023, 13, 1051273. DOI: 10.3389/fimmu.2022.1051273
[31]Ali A, Ali SL, Omneya A. A comprehensive methodological review of major developments in bioinformatics pipelines for transcriptomic data analysis. Novelty in Biomedicine, 2025, 13(1), 46-60. DOI: 10.22037/nbm.v13i1.45616
[32]Wanka C, Steinbach JP, Rieger J. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. Journal of Biological Chemistry, 2012, 287(40), 33436-33446. DOI: 10.1074/jbc.M112.384578
[33]Han TS, Hur K, Cho HS, Ban HS. Epigenetic associations between lncRNA/circRNA and miRNA in hepatocellular carcinoma. Cancers, 2020, 12(9), 2622. DOI: 10.3390/cancers12092622
[34]Ali S, Ali A, Ullah W, Alamri A, Mohammed Khatrawi E, Sagimova G, et al. Exploring advanced genomic and immunoinformatics techniques for identifying drug and vaccine targets against SARS-CoV-2. Journal of Genetic Engineering & Biotechnology, 2024, 22(4), 100439. DOI: 10.1016/j.jgeb.2024.100439
[35]Gurung SK, Nigam L, Vikramdeo KS, Mondal N. Cross talk between oxidative stress and p53 family members in regulating cancer. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, 2021, 1-16. DOI: 10.1007/978-981-15-4501-6_92-1
[36]Zhuang L, Ali A, Yang L, Ye Z, Li L, Ni R, et al. Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate. Infectious Medicine, 2024, 3(4), 100148. DOI: 10.1016/j.imj.2024.100148
[37]Zhuang L, Ali A, Yang L, Ye Z, Li L, Ni R, et al. Leveraging computer-aided design and artificial intelligence to develop a next-generation multi-epitope tuberculosis vaccine candidate. Infectious Medicine, 2024, 3(4), 100148. DOI: 10.1016/j.imj.2024.100148
[38]Zhuang L, Zhao Y, Yang L, Li L, Ye Z, Ali A, et al. Harnessing bioinformatics for the development of a promising multi-epitope vaccine against tuberculosis: The ZL9810L vaccine. Decoding Infection and Transmission, 2024, 2, 10026. DOI: 10.1016/j.dcit.2024.100026
[39]Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death & Differentiation, 2020, 27(2), 662-675. DOI: 10.1038/s41418-019-0380-z
[40]Cheff DM, Huang C, Scholzen KC, Gencheva R, Ronzetti MH, Cheng Q, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biology, 2023, 62, 102703. DOI: 10.1016/j.redox.2023.102703
[41]McIntosh H M, Olliaro P. Artemisinin derivatives for treating severe malaria. The Cochrane Database of Systematic Reviews, 2000, 1998(2), CD000527. DOI: 10.1002/14651858.CD000527
[42]Manzoor U, Ali A, Ali SL, Abdelkarem O, Kanwal S, Alotaibi SS, et al. Mutational screening of GDAP1 in dysphonia associated with Charcot-Marie-Tooth disease: Clinical insights and phenotypic effects. Journal of Genetic Engineering & Biotechnology, 2023, 21(1), 119. DOI: 10.1186/s43141-023-00568-9
[43]Lee J, Roh JL. Unveiling therapeutic avenues targeting xCT in head and neck cancer. Cellular Oncology, 2024, 47(6), 2019-2030. DOI: 10.1007/s13402-024-00997-9
[44]Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chemical Biology, 2019, 26(5), 623-633. e9. DOI: 10.1016/j.chembiol.2019.01.008
[45]Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR. The anti-malarial artesunate is also active against cancer. International Journal of Oncology, 2001, 18(4), 767-773. DOI: 10.3892/ijo.18.4.767
[46]Zhang X, Guo Y, Li H, Han L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. Journal of Cancer, 2021, 12(22), 6610-6619. DOI: 10.7150/jca.58500
[47]Plosker GL, Croom KF. Sulfasalazine: A review of its use in the management of rheumatoid arthritis. Drugs, 2005, 65(13), 1825-1849. DOI: 10.2165/00003495-200565130-00008
[48]Tong J, Lan XT, Zhang Z, Liu Y, Sun DY, Wang XJ, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: Potential involvement of PANoptosis. Acta Pharmacologica Sinica, 2023, 44(5), 1014-1028. DOI: 10.1038/s41401-022-01010-5
[49]Ali A, Ali SL, Ullah W, Khan A. Gene expression profiling identifies CAV1, CD44, and TFRC as potential diagnostic markers and therapeutic targets for multiple myeloma. Cell Biochemistry and Biophysics, 2025, 83(3), 3633-3650. DOI: 10.1007/s12013-025-01743-0
[50]Ali SL, Ali A, Alamri A, Baiduissenova A, Dusmagambetov M, Abduldayeva A. Genomic annotation for vaccine target identification and immunoinformatics-guided multi-epitope-based vaccine design against Songling virus through screening its whole genome encoded proteins. Frontiers in Immunology, 2023, 14, 1284366. DOI: 10.3389/fimmu.2023.1284366
[51]Aiman S, Ahmad A, Khan AA, Alanazi AM, Samad A, Ali SL, et al. Vaccinomics-based next-generation multi-epitope chimeric vaccine models prediction against Leishmania tropica - a hierarchical subtractive proteomics and immunoinformatics approach. Frontiers in Immunology, 2023, 14, 1259612. DOI: 10.3389/fimmu.2023.1259612
[52]Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, et al. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: Recent advances and challenges. Journal of Materials Chemistry B, 2019, 7(15), 2421-2433. DOI: 10.1039/c9tb00170k
[53]Liu H, Lu Y, Zong J, Zhang B, Li X, Qi H, et al. Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy. Journal of Nanobiotechnology, 2024, 22(1), 663. DOI: 10.1186/s12951-024-02913-7
[54]Patel T. Cholangiocarcinoma. Nature Clinical Practice Gastroenterology & Hepatology, 2006, 3(1), 33-42. DOI: 10.1038/ncpgasthep0389
[55]Keng CT, Yogarajah T, Lee RCH, Muhammad IBH, Chia BS, Vasandani SR, et al. AAV-CRISPR-Cas13 eliminates human enterovirus and prevents death of infected mice. EBioMedicine, 2023, 93, 104682. DOI: 10.1016/j.ebiom.2023.104682
[56]Petrov DA, Ivantsov RD, Zharkov SM, Velikanov DA, Molokeev MS, Lin CR, et al. Magnetic and magneto-optical properties of Fe3O4 nanoparticles modified with Ag. Journal of Magnetism and Magnetic Materials, 2020, 493, 165692. DOI: 10.1016/j.jmmm.2019.165692
[57]Liu R, Yu X, Su C, Shi Y, Zhao L. Nanoparticle delivery of artesunate enhances the anti-tumor efficiency by activating mitochondria-mediated cell apoptosis. Nanoscale Research Letters, 2017, 12(1), 403. DOI: 10.1186/s11671-017-2169-7
[58]Bolognesi G, Friddin MS, Salehi-Reyhani A, Barlow NE, Brooks NJ, Ces O, e tal. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nature Communications, 2018, 9(1), 1882. DOI: 10.1038/s41467-018-04282-w
[59]Chen Y, Li L, Lan J, Cui Y, Rao X, Zhao J, et al. CRISPR screens uncover protective effect of PSTK as a regulator of chemotherapy-induced ferroptosis in hepatocellular carcinoma. Molecular Cancer, 2022, 21(1), 11. DOI: 10.1186/s12943-021-01466-9
[60]Asmamaw Mengstie M. Viral vectors for the in vivo delivery of crispr components: Advances and challenges. Frontiers in Bioengineering and Biotechnology, 2022, 10, 895713. DOI: 10.3389/fbioe.2022.895713
[61]Baru Venkata R, Prasanth DSNBK, Pasala PK, Panda SP, Tatipamula VB, Mulukuri S, et al. Utilizing andrographis paniculata leaves and roots by effective usage of the bioactive andrographolide and its nanodelivery: Investigation of antikindling and antioxidant activities through in silico and in vivo studies. Frontiers in Nutrition, 2023, 10, 1185236. DOI: 10.3389/fnut.2023.1185236
[62]Gao J, Luo T, Wang J. Gene interfered-ferroptosis therapy for cancers. Nature Communications, 2021, 12(1), 5311. DOI: 10.1038/s41467-021-25632-1
[63]Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, et al. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomedicine & Pharmacotherapy, 2022, 154, 113609. DOI: 10.1016/j.biopha.2022.113609
[64]Cheng Y, Wang X, Huang S, Zhang L, Lan B, Li X, et al. A CRISPR-Cas9 library screening identifies CARM1 as a critical inhibitor of ferroptosis in hepatocellular carcinoma cells. Molecular Therapy Nucleic Acids, 2023, 34, 102063. DOI: 10.1016/j.omtn.2023.102063
[65]Zhang S, Liu Q, Chang M, Pan Y, Yahaya BH, Liu Y, et al. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death & Disease, 2023, 14(5), 340. DOI: 10.1038/s41419-023-05859-0
[66]Monty MA, Islam MA, Nan X, Tan J, Tuhin IJ, Tang X, et al. Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy. British Journal of Pharmacology, 2021, 178(8), 1741-1755. DOI: 10.1111/bph.15414
[67]Zhu T, Shi L, Yu C, Dong Y, Qiu F, Shen L, et al. Ferroptosis promotes photodynamic therapy: Supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. Theranostics, 2019, 9(11), 3293-3307. DOI: 10.7150/thno.32867
[68]Gu X, Mu C, Zheng R, Zhang Z, Zhang Q, Liang T. The cancer antioxidant regulation system in therapeutic resistance. Antioxidants, 2024, 13(7), 778. DOI: 10.3390/antiox13070778
[69]Khatrawi EM, Ali SL, Ali SY, Abduldayeva A, Alhegaili AS. Targeting UPF0721 from Salmonella entericaserovar Typhimurium strain L-4126 cause meningitis designing multi-epitope vaccine utilizing immuno-informatics and in-silico approaches. Molecular Systems Design & Engineering, 2025,10, 549-566. DOI: 10.1039/D5ME00027K
[70]Chuang YT, Yen CY, Chien TM, Chang FR, Tsai YH, Wu KC, et al. Ferroptosis-regulated natural products and mirnas and their potential targeting to ferroptosis and exosome biogenesis. International Journal of Molecular Sciences, 2024, 25(11), 6083. DOI: 10.3390/ijms25116083
[71]Liu Y, Gu W. p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death & Differentiation, 2022, 29(5), 895-910. DOI: 10.1038/s41418-022-00943-y
[72]Zhang Y, Xie J. Ferroptosis-related exosomal non-coding RNAs: Promising targets in pathogenesis and treatment of non-malignant diseases. Frontiers in Cell and Developmental Biology, 2024, 12, 1344060. DOI: 10.3389/fcell.2024.1344060.
[73]Ali A, Luqman Ali S. A stable mRNA-based novel multi-epitope vaccine designs against infectious heartland virus by integrated immunoinformatics and reverse vaccinology approaches. Viral Immunology, 2025, 38(3), 73-87. DOI: 10.1089/vim.2025.0004
[74]Deng SH, Wu DM, Li L, Liu T, Zhang T, Li J, et al. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochemical and Biophysical Research Communications, 2021, 549, 54-60. DOI: 10.1016/j.bbrc.2021.02.077
[75]Ali SL, Ali A, Khan A. Identification and assessment of ferroptosis-related genes and their implication as therapeutic agents for pancreatic ductal adenocarcinoma. Annals of Pancreatic Cancer, 2025, 8, 6. DOI: 10.21037/apc-25-2
[76]An Y, Ali SL, Liu Y, Abduldayeva A, Ni R, Li Y, et al. CP91110P: A Computationally Designed Multi-Epitope Vaccine Candidate for Tuberculosis via TLR-2/4 Synergistic Immunomodulation. Biology, 2025, 14(9), 1196. DOI: 10.3390/biology14091196
[77]García P, Bizama C, Rosa L, Espinoza JA, Weber H, Cerda-Infante J, et al. Functional and genomic characterization of three novel cell lines derived from a metastatic gallbladder cancer tumor. Biological Research, 2020, 53(1), 13. DOI: 10.1186/s40659-020-00282-7
[78]Gockel I, Bohl JR, Eckardt VF, Junginger T. Reduction of interstitial cells of Cajal (ICC) associated with neuronal nitric oxide synthase (n-NOS) in patients with achalasia. American Journal of Gastroenterology, 2008, 103(4), 856-864. DOI: 10.1111/j.1572-0241.2007.01667.x
[79]Hu J, Wang L, Li L, Wang Y, Bi J. A novel focal adhesion-related risk model predicts prognosis of bladder cancer-a bioinformatic study based on TCGA and GEO database. BMC Cancer, 2022, 22(1), 1158. DOI: 10.1186/s12885-022-10264-5
[80]Vaeteewoottacharn K, Pairojkul C, Kariya R, Muisuk K, Imtawil K, Chamgramol Y, et al. Establishment of highly transplantable cholangiocarcinoma cell lines from a patient-derived xenograft mouse model. Cells, 2019, 8(5), 496. DOI: 10.3390/cells8050496
[81]Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Disease Models and Mechanisms, 2008, 1(2-3), 78-82. DOI: 10.1242/dmm.000976
[82]Ali A, Alamri A, Ullah W, Waseem T, Ali SL, Al Arian T, et al. Terpenoids modulation of the IFI16-AIM2 interaction for enhanced immune response in lung squamous cell carcinoma and AIM2-dysregulated diseases. In Silico Pharmacology, 2025, 13(3), 174. DOI: 10.1007/s40203-025-00453-y.
[83]Yousafzai U, Javed N, Ali SL, Ali A, Hamza A. Computer-aided discovery of novel cox-2 inhibitors for anti-inflammatory therapy using pharmacophore modelling, molecular docking, admet, and virtual screening. Advances in Modern Biomedicine, 2025, 1(4), 25-38. DOI: 10.64229/md3sjz95
[84]Zhang M, Ali SL, Tian Y, Abduldayeva A, Zhou S, An Y, et al. EP9158H: An immunoinformatics-designed mrna vaccine encoding multi-epitope antigens and dual tlr agonists for tuberculosis prevention. Bioengineering, 2025, 12(12), 1378. DOI: 10.3390/bioengineering12121378
[85]Chen SP, Tian J. Bibliometric analysis of programmed cell death and immunogenic cell death in hepatocellular carcinoma immunotherapy: Global trends and future directions. Discover Oncology, 2025, 16(1), 1208. DOI: 10.1007/s12672-025-02278-9
[86]Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell & Bioscience, 2017, 7, 50. DOI: 10.1186/s13578-017-0179-x
[87]Bravo-Vázquez LA, Méndez-García A, Rodríguez AL, Sahare P, Pathak S, Banerjee A, et al. Applications of nanotechnologies for miRNA-based cancer therapeutics: Current advances and future perspectives. Frontiers in Bioengineering and Biotechnology, 2023, 11, 1208547. DOI: 10.3389/fbioe.2023.1208547
[88]Jiang X, Stockwell BR, Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology, 2021, 22(4), 266-282. DOI: 10.1038/s41580-020-00324-8
[89]Li J, Ma C, Cao P, Guo W, Wang P, Yang Y, et al. A CD147-targeted small-molecule inhibitor potentiates gemcitabine efficacy by triggering ferroptosis in pancreatic ductal adenocarcinoma. Cell Reports Medicine, 2025, 6(8), 102292. DOI: 10.1016/j.xcrm.2025.102292
[90]Zhang X, Li X. Abnormal iron and lipid metabolism mediated ferroptosis in kidney diseases and its therapeutic potential. Metabolites, 2022, 12(1), 58. DOI: 10.3390/metabo12010058
[91]Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, et al. Unveil intrahepatic cholangiocarcinoma heterogeneity through the lens of omics and multi-omics approaches. Cancers, 2024, 16(16), 2889. DOI: 10.3390/cancers16162889
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Syed Mudasser Ali, Zala Mushtaq (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.